L A T E X Mathematical Symbols The more unusual symbols are not defined in base L A T E X (NFSS) and require \usepackage{amssymb} 1 Greek and Hebrew letters α \alpha κ \kappa ψ \psi } \digamma ∆ \Delta Θ \Theta β \beta λ \lambda ρ \rho ε \varepsilon Γ \Gamma Υ \Upsilon χ \chi j \mu σ \sigma κ \varkappa Λ \Lambda Ξ \Xi δ \delta ν \nu τ \tau ϕ \varphi Ω \Omega c \epsilon o o θ \theta c \varpi Φ \Phi ℵ \aleph η \eta ω \omega υ \upsilon · \varrho Π \Pi Z \beth γ \gamma φ \phi ξ \xi ς \varsigma Ψ \Psi ¯ \daleth ι \iota π \pi ζ \zeta ϑ \vartheta Σ \Sigma ג \gimel 2 L A T E X math constructs abc xyz \frac¦abc¦¦xyz¦ o/c \overline¦abc¦ −→ o/c \overrightarrow¦abc¦ 1 f’ o/c \underline¦abc¦ ←− o/c \overleftarrow¦abc¦ √ o/c \sqrt¦abc¦ ´ o/c \widehat¦abc¦ .... o/c \overbrace¦abc¦ n √ o/c \sqrt[n]¦abc¦ o/c \widetilde¦abc¦ o/c .... \underbrace¦abc¦ 3 Delimiters [ [ ¦ \{ \lfloor ´ / ⇑ \Uparrow . \llcorner [ \vert ¦ \} | \rfloor ` \backslash ↑ \uparrow \lrcorner | \| ' \langle \lceil [ [ ⇓ \Downarrow ' \ulcorner | \Vert ` \rangle | \rceil ] ] ↓ \downarrow ¯ \urcorner Use the pair \left: 1 and \right: 2 to match height of delimiters : 1 and : 2 to the height of their contents, e.g., \left| expr \right| \left\{ expr \right\} \left\Vert expr \right. 4 Variable-sized symbols (displayed formulae show larger version) ¸ \sum \int ¸ \biguplus ¸ \bigoplus \bigvee ¸ \prod \oint ¸ \bigcap ¸ \bigotimes \bigwedge ¸ \coprod \iint ¸ \bigcup ¸ \bigodot ¸ \bigsqcup 5 Standard Function Names Function names should appear in Roman, not Italic, e.g., Correct: \tan(at-n\pi) −→ tan(ot −nπ) Incorrect: tan(at-n\pi) −→ ton(ot −nπ) arccos \arccos arcsin \arcsin arctan \arctan arg \arg cos \cos cosh \cosh cot \cot coth \coth csc \csc deg \deg det \det dim \dim exp \exp gcd \gcd hom \hom inf \inf ker \ker lg \lg lim \lim liminf \liminf limsup \limsup ln \ln log \log max \max min \min Pr \Pr sec \sec sin \sin sinh \sinh sup \sup tan \tan tanh \tanh 6 Binary Operation/Relation Symbols ∗ \ast ± \pm ∩ \cap < \lhd × \star ∓ \mp ∪ \cup \rhd \cdot H \amalg ¬ \uplus \triangleleft ◦ \circ \odot ¯ \sqcap > \triangleright • \bullet \ominus . \sqcup _ \unlhd ( \bigcirc ⊕ \oplus ∧ \wedge _ \unrhd \diamond . \oslash ∨ \vee \bigtriangledown \times ⊗ \otimes † \dagger ´ \bigtriangleup ÷ \div t \wr ‡ \ddagger ` \setminus . \centerdot ¯ \Box ¯ \barwedge Y \veebar ~ \circledast ¬ \boxplus · \curlywedge ( \curlyvee \circledcirc ¬ \boxminus + \Cap J \Cup \circleddash ¯ \boxtimes ⊥ \bot · \top ÷ \dotplus ¯ \boxdot ¡ \intercal · \rightthreetimes ÷ \divideontimes ¯ \square \doublebarwedge ` \leftthreetimes ≡ \equiv ≤ \leq ≥ \geq ⊥ \perp ∼ = \cong ≺ \prec ~ \succ [ \mid = \neq _ \preceq _ \succeq | \parallel ∼ \sim < \ll \gg > \bowtie · \simeq ⊂ \subset ⊃ \supset \Join ≈ \approx ⊆ \subseteq ⊇ \supseteq \ltimes · \asymp \sqsubset \sqsupset \rtimes . = \doteq _ \sqsubseteq _ \sqsupseteq \smile ∝ \propto ¬ \dashv ¬ \vdash · \frown [= \models ∈ \in ÷ \ni ´ ∈ \notin ~ \approxeq _ \leqq _ \geqq ≶ \lessgtr ∼ \thicksim < \leqslant ` \geqslant ÷ \lesseqgtr ~ \backsim ´ \lessapprox . \gtrapprox = \lesseqqgtr - \backsimeq ≪ \lll ≫ \ggg = \gtreqqless = \triangleq < \lessdot \gtrdot ÷ \gtreqless = \circeq \lesssim \gtrsim ≷ \gtrless = \bumpeq \eqslantless ` \eqslantgtr ~ \backepsilon · \Bumpeq \precsim ` \succsim ( \between = \doteqdot . \precapprox ¯ \succapprox . \pitchfork ≈ \thickapprox \Subset \Supset . \shortmid = \fallingdotseq ´ \subseteqq ~ \supseteqq · \smallfrown = \risingdotseq \sqsubset \sqsupset · \smallsmile ∝ \varpropto - \preccurlyeq · \succcurlyeq ' \Vdash ∴ \therefore - \curlyeqprec ` \curlyeqsucc = \vDash ∵ \because ¬ \blacktriangleleft > \blacktriangleright ' \Vvdash = \eqcirc _ \trianglelefteq _ \trianglerighteq + \shortparallel = \neq < \vartriangleleft \vartriangleright + \nshortparallel æ \ncong < \nleq _ \ngeq _ \nsubseteq [ \nmid _ \nleqq _ \ngeqq _ \nsupseteq ∦ \nparallel < \nleqslant } \ngeqslant , \nsubseteqq · \nshortmid ≮ \nless ≯ \ngtr ÷ \nsupseteqq + \nshortparallel ⊀ \nprec ~ \nsucc _ \subsetneq ~ \nsim _ \npreceq _ \nsucceq _ \supsetneq ÷ \nVDash ¸ \precnapprox ¸ \succnapprox ´ \subsetneqq = \nvDash \precnsim ` \succnsim \supsetneqq - \nvdash ¸ \lnapprox ¸ \gnapprox _ \varsubsetneq < \ntriangleleft _ \lneq _ \gneq _ \varsupsetneq _ \ntrianglelefteq _ \lneqq _ \gneqq ´ \varsubsetneqq ; \ntriangleright \lnsim \gnsim , \varsupsetneqq _ \ntrianglerighteq _ \lvertneqq _ \gvertneqq 7 Arrow symbols ← \leftarrow ←− \longleftarrow ↑ \uparrow ⇐ \Leftarrow ⇐= \Longleftarrow ⇑ \Uparrow → \rightarrow −→ \longrightarrow ↓ \downarrow ⇒ \Rightarrow =⇒ \Longrightarrow ⇓ \Downarrow ↔ \leftrightarrow ←→ \longleftrightarrow | \updownarrow ⇔ \Leftrightarrow ⇐⇒ \Longleftrightarrow ¨ \Updownarrow → \mapsto −→ \longmapsto \nearrow ← \hookleftarrow → \hookrightarrow ` \searrow ÷ \leftharpoonup ÷ \rightharpoonup \swarrow ÷ \leftharpoondown ÷ \rightharpoondown ` \nwarrow = \rightleftharpoons ~ \leadsto --- \dashrightarrow --- \dashleftarrow ⇔ \leftleftarrows ¯ \leftrightarrows ÷ \Lleftarrow ÷ \twoheadleftarrow ÷ \leftarrowtail ÷ \looparrowleft = \leftrightharpoons . \curvearrowleft ´ \circlearrowleft ¨ \Lsh ¦ \upuparrows \upharpoonleft \downharpoonleft ÷ \multimap - \leftrightsquigarrow ⇒ \rightrightarrows · \rightleftarrows ⇒ \rightrightarrows · \rightleftarrows ÷ \twoheadrightarrow ÷ \rightarrowtail + \looparrowright = \rightleftharpoons \curvearrowright ` \circlearrowright ¨ \Rsh | \downdownarrows ` \upharpoonright \downharpoonright ~ \rightsquigarrow ÷ \nleftarrow ÷ \nrightarrow = \nLeftarrow = \nRightarrow ÷ \nleftrightarrow = \nLeftrightarrow 8 Miscellaneous symbols ∞ \infty ∀ \forall k \Bbbk ℘ \wp ∇ \nabla ∃ \exists + \bigstar ∠ \angle ∂ \partial ± \nexists ` \diagdown X \measuredangle ð \eth ∅ \emptyset \diagup < \sphericalangle ♣ \clubsuit ∅ \varnothing ♦ \Diamond U \complement ♦ \diamondsuit ı \imath · \Finv V \triangledown ♥ \heartsuit , \jmath . \Game ´ \triangle ♠ \spadesuit / \ell / \hbar . \vartriangle \cdots \iiiint / \hslash 4 \blacklozenge . . . \vdots \iiint ♦ \lozenge B \blacksquare . . . \ldots \iint G \mho & \blacktriangle . . . \ddots : \sharp / \prime * \blacktrinagledown · \Im . \flat ¯ \square \ \backprime ' \Re : \natural √ \surd ´ \circledS 9 Math mode accents ´ o \acute¦a¦ ¯ o \bar¦a¦ ´ ´ ¹ \Acute{\Acute{A}} ¯ ¯ ¹ \Bar{\Bar{A}} ˘ o \breve¦a¦ ˇ o \check¦a¦ ˘ ˘ ¹ \Breve{\Breve{A}} ˇ ˇ ¹ \Check{\Check{A}} ¨ o \ddot¦a¦ ˙ o \dot¦a¦ ¨ ¨ ¹ \Ddot{\Ddot{A}} ˙ ˙ ¹ \Dot{\Dot{A}} ` o \grave¦a¦ ˆ o \hat¦a¦ ` ` ¹ \Grave{\Grave{A}} ˆ ˆ ¹ \Hat{\Hat{A}} ˜ o \tilde¦a¦ o \vec¦a¦ ˜ ˜ ¹ \Tilde{\Tilde{A}} ¹ \Vec{\Vec{A}} 10 Array environment, examples Simplest version: \begin{array}{cols} row 1 \\ row 2 \\ . . . row m \end{array} where cols includes one character [lrc] for each column (with optional characters | inserted for vertical lines) and row j includes character & a total of (n −1) times to separate the n elements in the row. Examples: \left( \begin{array}{cc} 2\tau & 7\phi-frac5{12} \\ 3\psi & \frac{\pi}8 \end{array} \right) \left( \begin{array}{c} x \\ y \end{array} \right) \mbox{~and~} \left[ \begin{array}{cc|r} 3 & 4 & 5 \\ 1 & 3 & 729 \end{array} \right] 2τ 7φ − 5 12 3ψ π 8 r n and ¸ 3 4 5 1 3 729 f(z) = \left\{ \begin{array}{rcl} \overline{\overline{z^2}+\cos z} & \mbox{for} & |z|5 \end{array}\right. 1(.) = . 2 + cos . for [.[ < 3 0 for 3 ≤ [.[ ≤ 5 sin . for [.[ 5 11 Other Styles (math mode only) Caligraphic letters: $\mathcal{A}$ etc.: /B ( Tc T ( H1 . /L´^ O{ O{o T | 1 JA \ Z Mathbb letters: $\mathbb{A}$ etc.: ABC|EFGH" ¯ K'MN´PQ1S ¯UVWXYZ Mathfrak letters: $\mathfrak{A}$ etc.: ABCDEFGHI J KLMNOPQRSTUVWXYZ a b c 1 2 3 Math Sans serif letters: $\mathsf{A}$ etc.: ABCDEFGHI J KL MNOPQRS TUVWXYZ a b c 1 2 3 Math bold letters: $\mathbf{A}$ etc.: ABCDEFGHI JKLMNOPQRSTUVWXYZ abc 123 Math bold italic letters: define \def\mathbi#1{\textbf{\em #1}} then use $\mathbi{A}$ etc.: ABCDEFGHI J KLMNOPQRS TUVWXYZ a b c 1 2 3 12 Font sizes Math Mode: 1 −1 (r −r a ) dr ${\displaystyle \int f^{-1}(x-x_a)\,dx}$ 1 −1 (r −r a ) dr ${\textstyle \int f^{-1}(x-x_a)\,dx}$ f −1 (x−x a ) dx ${\scriptstyle \int f^{-1}(x-x_a)\,dx}$ f −1 (x−x a ) dx ${\scriptscriptstyle \int f^{-1}(x-x_a)\,dx}$ Text Mode: \tiny = smallest \scriptsize = very small \footnotesize = smaller \small = small \normalsize = normal \large = large \Large = Large \LARGE = LARGE \huge = huge \Huge = Huge 13 Text Mode: Accents and Symbols ´o \’{o} ¨o \"{o} ˆo \^{o} `o \‘{o} ˜o \~{o} ¯o \={o} s . \d s ˙ o \.{o} ˘o \u{o} ˝o \H{o} oo \t{oo} ¸ o \c{o} o . \d{o} ˚s \r s o ¯ \b{o} ˚ A \AA ˚a \aa ß \ss ı \i  \j ˝s \H s ø \o s \t s ˇs \v s Ø \O ¹ \P ' \S æ \ae Æ \AE † \dag ‡ \ddag c ( \copyright £ \pounds
Please download to view
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
...

lista de símbolos matemáticos

by ana-tyler

on

Report

Category:

Documents

Download: 0

Comment: 0

100

views

Comments

Description

Download lista de símbolos matemáticos

Transcript

L A T E X Mathematical Symbols The more unusual symbols are not defined in base L A T E X (NFSS) and require \usepackage{amssymb} 1 Greek and Hebrew letters α \alpha κ \kappa ψ \psi } \digamma ∆ \Delta Θ \Theta β \beta λ \lambda ρ \rho ε \varepsilon Γ \Gamma Υ \Upsilon χ \chi j \mu σ \sigma κ \varkappa Λ \Lambda Ξ \Xi δ \delta ν \nu τ \tau ϕ \varphi Ω \Omega c \epsilon o o θ \theta c \varpi Φ \Phi ℵ \aleph η \eta ω \omega υ \upsilon · \varrho Π \Pi Z \beth γ \gamma φ \phi ξ \xi ς \varsigma Ψ \Psi ¯ \daleth ι \iota π \pi ζ \zeta ϑ \vartheta Σ \Sigma ג \gimel 2 L A T E X math constructs abc xyz \frac¦abc¦¦xyz¦ o/c \overline¦abc¦ −→ o/c \overrightarrow¦abc¦ 1 f’ o/c \underline¦abc¦ ←− o/c \overleftarrow¦abc¦ √ o/c \sqrt¦abc¦ ´ o/c \widehat¦abc¦ .... o/c \overbrace¦abc¦ n √ o/c \sqrt[n]¦abc¦ o/c \widetilde¦abc¦ o/c .... \underbrace¦abc¦ 3 Delimiters [ [ ¦ \{ \lfloor ´ / ⇑ \Uparrow . \llcorner [ \vert ¦ \} | \rfloor ` \backslash ↑ \uparrow \lrcorner | \| ' \langle \lceil [ [ ⇓ \Downarrow ' \ulcorner | \Vert ` \rangle | \rceil ] ] ↓ \downarrow ¯ \urcorner Use the pair \left: 1 and \right: 2 to match height of delimiters : 1 and : 2 to the height of their contents, e.g., \left| expr \right| \left\{ expr \right\} \left\Vert expr \right. 4 Variable-sized symbols (displayed formulae show larger version) ¸ \sum \int ¸ \biguplus ¸ \bigoplus \bigvee ¸ \prod \oint ¸ \bigcap ¸ \bigotimes \bigwedge ¸ \coprod \iint ¸ \bigcup ¸ \bigodot ¸ \bigsqcup 5 Standard Function Names Function names should appear in Roman, not Italic, e.g., Correct: \tan(at-n\pi) −→ tan(ot −nπ) Incorrect: tan(at-n\pi) −→ ton(ot −nπ) arccos \arccos arcsin \arcsin arctan \arctan arg \arg cos \cos cosh \cosh cot \cot coth \coth csc \csc deg \deg det \det dim \dim exp \exp gcd \gcd hom \hom inf \inf ker \ker lg \lg lim \lim liminf \liminf limsup \limsup ln \ln log \log max \max min \min Pr \Pr sec \sec sin \sin sinh \sinh sup \sup tan \tan tanh \tanh 6 Binary Operation/Relation Symbols ∗ \ast ± \pm ∩ \cap < \lhd × \star ∓ \mp ∪ \cup \rhd \cdot H \amalg ¬ \uplus \triangleleft ◦ \circ \odot ¯ \sqcap > \triangleright • \bullet \ominus . \sqcup _ \unlhd ( \bigcirc ⊕ \oplus ∧ \wedge _ \unrhd \diamond . \oslash ∨ \vee \bigtriangledown \times ⊗ \otimes † \dagger ´ \bigtriangleup ÷ \div t \wr ‡ \ddagger ` \setminus . \centerdot ¯ \Box ¯ \barwedge Y \veebar ~ \circledast ¬ \boxplus · \curlywedge ( \curlyvee \circledcirc ¬ \boxminus + \Cap J \Cup \circleddash ¯ \boxtimes ⊥ \bot · \top ÷ \dotplus ¯ \boxdot ¡ \intercal · \rightthreetimes ÷ \divideontimes ¯ \square \doublebarwedge ` \leftthreetimes ≡ \equiv ≤ \leq ≥ \geq ⊥ \perp ∼ = \cong ≺ \prec ~ \succ [ \mid = \neq _ \preceq _ \succeq | \parallel ∼ \sim < \ll \gg > \bowtie · \simeq ⊂ \subset ⊃ \supset \Join ≈ \approx ⊆ \subseteq ⊇ \supseteq \ltimes · \asymp \sqsubset \sqsupset \rtimes . = \doteq _ \sqsubseteq _ \sqsupseteq \smile ∝ \propto ¬ \dashv ¬ \vdash · \frown [= \models ∈ \in ÷ \ni ´ ∈ \notin ~ \approxeq _ \leqq _ \geqq ≶ \lessgtr ∼ \thicksim < \leqslant ` \geqslant ÷ \lesseqgtr ~ \backsim ´ \lessapprox . \gtrapprox = \lesseqqgtr - \backsimeq ≪ \lll ≫ \ggg = \gtreqqless = \triangleq < \lessdot \gtrdot ÷ \gtreqless = \circeq \lesssim \gtrsim ≷ \gtrless = \bumpeq \eqslantless ` \eqslantgtr ~ \backepsilon · \Bumpeq \precsim ` \succsim ( \between = \doteqdot . \precapprox ¯ \succapprox . \pitchfork ≈ \thickapprox \Subset \Supset . \shortmid = \fallingdotseq ´ \subseteqq ~ \supseteqq · \smallfrown = \risingdotseq \sqsubset \sqsupset · \smallsmile ∝ \varpropto - \preccurlyeq · \succcurlyeq ' \Vdash ∴ \therefore - \curlyeqprec ` \curlyeqsucc = \vDash ∵ \because ¬ \blacktriangleleft > \blacktriangleright ' \Vvdash = \eqcirc _ \trianglelefteq _ \trianglerighteq + \shortparallel = \neq < \vartriangleleft \vartriangleright + \nshortparallel æ \ncong < \nleq _ \ngeq _ \nsubseteq [ \nmid _ \nleqq _ \ngeqq _ \nsupseteq ∦ \nparallel < \nleqslant } \ngeqslant , \nsubseteqq · \nshortmid ≮ \nless ≯ \ngtr ÷ \nsupseteqq + \nshortparallel ⊀ \nprec ~ \nsucc _ \subsetneq ~ \nsim _ \npreceq _ \nsucceq _ \supsetneq ÷ \nVDash ¸ \precnapprox ¸ \succnapprox ´ \subsetneqq = \nvDash \precnsim ` \succnsim \supsetneqq - \nvdash ¸ \lnapprox ¸ \gnapprox _ \varsubsetneq < \ntriangleleft _ \lneq _ \gneq _ \varsupsetneq _ \ntrianglelefteq _ \lneqq _ \gneqq ´ \varsubsetneqq ; \ntriangleright \lnsim \gnsim , \varsupsetneqq _ \ntrianglerighteq _ \lvertneqq _ \gvertneqq 7 Arrow symbols ← \leftarrow ←− \longleftarrow ↑ \uparrow ⇐ \Leftarrow ⇐= \Longleftarrow ⇑ \Uparrow → \rightarrow −→ \longrightarrow ↓ \downarrow ⇒ \Rightarrow =⇒ \Longrightarrow ⇓ \Downarrow ↔ \leftrightarrow ←→ \longleftrightarrow | \updownarrow ⇔ \Leftrightarrow ⇐⇒ \Longleftrightarrow ¨ \Updownarrow → \mapsto −→ \longmapsto \nearrow ← \hookleftarrow → \hookrightarrow ` \searrow ÷ \leftharpoonup ÷ \rightharpoonup \swarrow ÷ \leftharpoondown ÷ \rightharpoondown ` \nwarrow = \rightleftharpoons ~ \leadsto --- \dashrightarrow --- \dashleftarrow ⇔ \leftleftarrows ¯ \leftrightarrows ÷ \Lleftarrow ÷ \twoheadleftarrow ÷ \leftarrowtail ÷ \looparrowleft = \leftrightharpoons . \curvearrowleft ´ \circlearrowleft ¨ \Lsh ¦ \upuparrows \upharpoonleft \downharpoonleft ÷ \multimap - \leftrightsquigarrow ⇒ \rightrightarrows · \rightleftarrows ⇒ \rightrightarrows · \rightleftarrows ÷ \twoheadrightarrow ÷ \rightarrowtail + \looparrowright = \rightleftharpoons \curvearrowright ` \circlearrowright ¨ \Rsh | \downdownarrows ` \upharpoonright \downharpoonright ~ \rightsquigarrow ÷ \nleftarrow ÷ \nrightarrow = \nLeftarrow = \nRightarrow ÷ \nleftrightarrow = \nLeftrightarrow 8 Miscellaneous symbols ∞ \infty ∀ \forall k \Bbbk ℘ \wp ∇ \nabla ∃ \exists + \bigstar ∠ \angle ∂ \partial ± \nexists ` \diagdown X \measuredangle ð \eth ∅ \emptyset \diagup < \sphericalangle ♣ \clubsuit ∅ \varnothing ♦ \Diamond U \complement ♦ \diamondsuit ı \imath · \Finv V \triangledown ♥ \heartsuit , \jmath . \Game ´ \triangle ♠ \spadesuit / \ell / \hbar . \vartriangle \cdots \iiiint / \hslash 4 \blacklozenge . . . \vdots \iiint ♦ \lozenge B \blacksquare . . . \ldots \iint G \mho & \blacktriangle . . . \ddots : \sharp / \prime * \blacktrinagledown · \Im . \flat ¯ \square \ \backprime ' \Re : \natural √ \surd ´ \circledS 9 Math mode accents ´ o \acute¦a¦ ¯ o \bar¦a¦ ´ ´ ¹ \Acute{\Acute{A}} ¯ ¯ ¹ \Bar{\Bar{A}} ˘ o \breve¦a¦ ˇ o \check¦a¦ ˘ ˘ ¹ \Breve{\Breve{A}} ˇ ˇ ¹ \Check{\Check{A}} ¨ o \ddot¦a¦ ˙ o \dot¦a¦ ¨ ¨ ¹ \Ddot{\Ddot{A}} ˙ ˙ ¹ \Dot{\Dot{A}} ` o \grave¦a¦ ˆ o \hat¦a¦ ` ` ¹ \Grave{\Grave{A}} ˆ ˆ ¹ \Hat{\Hat{A}} ˜ o \tilde¦a¦ o \vec¦a¦ ˜ ˜ ¹ \Tilde{\Tilde{A}} ¹ \Vec{\Vec{A}} 10 Array environment, examples Simplest version: \begin{array}{cols} row 1 \\ row 2 \\ . . . row m \end{array} where cols includes one character [lrc] for each column (with optional characters | inserted for vertical lines) and row j includes character & a total of (n −1) times to separate the n elements in the row. Examples: \left( \begin{array}{cc} 2\tau & 7\phi-frac5{12} \\ 3\psi & \frac{\pi}8 \end{array} \right) \left( \begin{array}{c} x \\ y \end{array} \right) \mbox{~and~} \left[ \begin{array}{cc|r} 3 & 4 & 5 \\ 1 & 3 & 729 \end{array} \right] 2τ 7φ − 5 12 3ψ π 8 r n and ¸ 3 4 5 1 3 729 f(z) = \left\{ \begin{array}{rcl} \overline{\overline{z^2}+\cos z} & \mbox{for} & |z|5 \end{array}\right. 1(.) = . 2 + cos . for [.[ < 3 0 for 3 ≤ [.[ ≤ 5 sin . for [.[ 5 11 Other Styles (math mode only) Caligraphic letters: $\mathcal{A}$ etc.: /B ( Tc T ( H1 . /L´^ O{ O{o T | 1 JA \ Z Mathbb letters: $\mathbb{A}$ etc.: ABC|EFGH" ¯ K'MN´PQ1S ¯UVWXYZ Mathfrak letters: $\mathfrak{A}$ etc.: ABCDEFGHI J KLMNOPQRSTUVWXYZ a b c 1 2 3 Math Sans serif letters: $\mathsf{A}$ etc.: ABCDEFGHI J KL MNOPQRS TUVWXYZ a b c 1 2 3 Math bold letters: $\mathbf{A}$ etc.: ABCDEFGHI JKLMNOPQRSTUVWXYZ abc 123 Math bold italic letters: define \def\mathbi#1{\textbf{\em #1}} then use $\mathbi{A}$ etc.: ABCDEFGHI J KLMNOPQRS TUVWXYZ a b c 1 2 3 12 Font sizes Math Mode: 1 −1 (r −r a ) dr ${\displaystyle \int f^{-1}(x-x_a)\,dx}$ 1 −1 (r −r a ) dr ${\textstyle \int f^{-1}(x-x_a)\,dx}$ f −1 (x−x a ) dx ${\scriptstyle \int f^{-1}(x-x_a)\,dx}$ f −1 (x−x a ) dx ${\scriptscriptstyle \int f^{-1}(x-x_a)\,dx}$ Text Mode: \tiny = smallest \scriptsize = very small \footnotesize = smaller \small = small \normalsize = normal \large = large \Large = Large \LARGE = LARGE \huge = huge \Huge = Huge 13 Text Mode: Accents and Symbols ´o \’{o} ¨o \"{o} ˆo \^{o} `o \‘{o} ˜o \~{o} ¯o \={o} s . \d s ˙ o \.{o} ˘o \u{o} ˝o \H{o} oo \t{oo} ¸ o \c{o} o . \d{o} ˚s \r s o ¯ \b{o} ˚ A \AA ˚a \aa ß \ss ı \i  \j ˝s \H s ø \o s \t s ˇs \v s Ø \O ¹ \P ' \S æ \ae Æ \AE † \dag ‡ \ddag c ( \copyright £ \pounds
Fly UP